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I. INTRODUCTION

Breast mass segmentation is arguably one of the most difficult tasks in the development of Computer-Aided
Diagnostic (CAD,) systems. The main objective of this research is to develop an image segmentation
method for mammograms that contain dense tissue as well as for mammograms that contain dense/fatty
tissue, while its second objective is to incorporate the segmentation method into a CAD, system.
Specifically, we intend to do the following: (1) To develop an automatic image segmentation scheme to
separate clinically occult breast masses from surrounding tissue (2) To evaluate the method by comparing
the ROIs with mammographers’ drawings and (3) To separate masses from glandular tissues using the
Multiple Circular Path Convolution Neural Network (MCPCNN) classifier.

II. BODY

During the past 12 months the PI has tested an automatic image segmentation algorithm on a set of dense
breast mass cases.  This section of the annual summary provides a detailed description of the experiment
and is divided into the following sections: (A) Segmentation Method — an overview of the automated image
segmentation method (please see Appendix for detailed description of method) (B) Database and
Experiments — description of masses used and experiments performed (C) Results — statistical and graphical
results of the experiment (D) Discussion of Results and (E) Future Work.

A. Segmentation Method

The segmentation method used in this study evaluates the steepest changes within a probabilistic cost
function in an effort to determine the computer segmented contour which is most closely correlated with
expert radiologist manual traces. It segments breast masses by combining region growing with the
analysis of a probability-based function [1]. Once a set of contours is grown using region growing the
probability density functions inside and outside the contours are found. A function, which is the logarithm
of these probability density functions, is then constructed. The function is then searched for possible steep
change locations, i.e., sharp changes in the logarithm values, and the intensities corresponding to those
locations are likely to produce contours which are highly correlated with expert traces. A detailed
description of the method is provided in the manuscripts located in the appendix of this document [2, 3].

B. Database and Experiments

The PI has selected 342 cases from the University of South Florida’s Digital Database for Screening
Mammography (DDSM) [4], where 175 of these cases are cancerous masses and 167 of the cases are
benign masses. The densities of all cases from the DDSM have been rated according to the American
College of Radiology’s (ACR) density scale, which ranges from 1-4. A breast containing a great deal of
fatty tissue would receive a rating of 1 and a breast containing a great deal of dense tissue would receive a
rating of 4. The current database contains 242 cases with a density rating of 3 and 100 cases with a density
rating of 4. In the current experiment the cost likelihood function threshold values (TV, and TV,) were set
to 1800 and 1300, respectively. Approximately 300 of the cases were manually traced by one expert
radiologist (Expert 1), while 46 of the cases were manually traced by a second expert radiologist (Expert
2). One hundred ninety eight of the cases have been validated by one expert radiologist, while 45 of the
cases have been validated by the second expert radiologist. The validation statistics are overlap,
accuracy, sensitivity, and specificity as described in the manuscripts [2, 3].

C. Results

1. Statistical Results

As described in the manuscripts [2, 3], the cost likelihood function was used to narrow a large set of contour
choices to three contours which are highly correlated with the expert radiologist traces. Figures 1-4 are
plots of the percentages of cases regarding overlap and accuracy statistics that fall between specific data
ranges for all three contour choices, namely, groups 1, 2, and 3. For example, the light gray bar
corresponding to the label “0-0.09” shows the percentage of cases for the group 1 trace that fall between 0
and 0.09. All masses for the plots shown used Expert 1’s traces for validation.
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Table 1 contains mean values of overlap and accuracy statistics for all contour groups for both cancerous
and benign masses.

Table 1- Mean Value of Overlap and Accuracy Statistics for Groups 1, 2, and 3 (Expert 1)

Cancer Cases Benign Cases
Overlap | Accuracy Overlap Accuracy
Group | 0.29 0.73 0.32 0.82
Group 2 0.46 0.78 0.52 0.87
Group 3 0.46 0.76 0.51 0.82

2. Visual Results
Figures 5-10 show results for cases in which there were strong, average, and low correlations between the

computer-segmented results and Expert 1’s manual traces for both cancer and benign cases. In cases for
which Expert 2 has not yet traced the mass, the figure will indicate “no data”. Figures 11 and 12 show
results for cases where there is a great deal of disagreement between the Expert 1 and Expert 2 traces.
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Figure 5 — Cancer Case Results for Groups 1, 2, and 3 (Strong Correlation)
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D. Discussion of Results

Previous experiments showed that in most cases, the contour produced by the intensity corresponding to
the first steep change location in the cost function best matched the expert radiologist traces regarding the
overlap and accuracy statistics. This finding was verified via Analysis of Variance (ANOVA) testing,
where p-values ranged from 1.03x10” — 7.51x10"".  However, the mean values listed in table 1 of this
experiment revealed that the group 2 and group 3 traces performed equally well regarding the overlap
statistic. The accuracy results were slightly higher for group 2 in comparison to group 3. Figures 1-4
reveal that there was a larger percentage of cases for which the group 2 and group 3 traces achieved
higher overlap and accuracy values (approximately 0.6 and above), in comparison to the group 1 traces
which achieved lower overlap and accuracy values (approximately 0.5 and below). This leads us to
believe that the group 2 and group 3 traces generally match expert manual traces in the best way. This
observation is consistent with the visual results shown in Figures 5-10. We have also obtained higher
values for overlap and accuracy values in previous experiments because the boundaries of the masses in
these data sets were clearer than those for the dense mass cases.

We also recognize that for cases in which the intensity values outside the perceived boundaries of the
mass are greater than or equal to values inside the mass, the region growing technique produces contours
that have grown into those areas. We refer to this phenomenon as flooding because the contour “floods”
into fibroglandular tissue that is not actual mass tissue. Furthermore, areas inside the mass that have low
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intensity values are excluded from contour growth so some mass tissue is missed during the region
growing phase. These are limitations of the current segmentation algorithm and we plan to address these
issues during the next phase of this research work.

Figures 11 and 12 indicate that large differences in expert interpretations of mass boundaries can exist,
therefore we are motivated us to raise questions around the consistency and reliability of expert traces.
In some cases there is strong agreement between the computer trace and Expert 1’s trace while in other
cases there is strong agreement between the computer trace and Expert 2’s trace, so it is important to
analyze expert opinions prior to further optimizing the segmentation method, regarding image filtering.

E. Future Work

The statement of work states that the PI would filter the images following the experiment performed
during the past several months, however, the question of expert reliability has come into question and
should be addressed prior to the optimization of the algorithm. During the next phase of this research
work, the PI will compare the computer-segmented results to each observer as well has compare the
experts’ traces to each other in efforts to answer the questions around expert reliability and consistency.

III. KEY RESEARCH ACCOMPLISHMENTS

e Selected nearly 350 mass cases with density ratings of 3 and 4 from the University of South Florida’s
Digital Database for Screening Mammography
Collected approximately 100 cases from the Georgetown University Medical Center image database
300 masses have been delineated by one expert radiologist

¢ 46 masses have been delineated by a second expert radiologist (this radiologist has agreed to delineate
the remaining cases)

e Validated 198 masses regarding overlap, accuracy, sensitivity, and specificity statistics

e Reviewed literature regarding reliability and consistency among expert observers [5-10]

IV. REPORTABLE OUTCOMES

Manuscripts:

1. L.Kinnard, S.-C. B. Lo, E. Makariou, T. Osicka, P. Wang, M.T. Freedman, M. Chouikha, “Likelihood
Function Analysis for Segmentation of Mammographic Masses for Various Margin Groups”,
Proceedings of the IEEE Symposium on Biomedical Imaging, April 2004.

2. L. Kinnard, S.-C. B. Lo, E. Makariou, T. Osicka, P. Wang, M.T. Freedman, M. Chouikha, “Steepest
changes of a probability-based cost function for delineation of mammographic masses: A validation
study”, Medical Physics (manuscript submitted 12/03, revised manuscript submitted 4/04, revised
manuscript accepted 6/04)

3. L. Kinnard, Ph.D. thesis, “Segmentation of Mass Bodies and Their Extended Borders on
Mammograms Using Maximum-Likelihood Analysis”, June 2003.

Oral Presentations:

1. L.Kinnard, S.-C. B. Lo, E. Makariou, T. Osicka, P. Wang, M.T. Freedman, M. Chouikha, “Likelihood
Function Analysis for Segmentation of Mammographic Masses for Various Margin Groups”,
Proceedings of the IEEE Symposium on Biomedical Imaging, April 2004.

2. “Breast Cancer Research: Computer-Aided Diagnosis and Image Segmentation”, Howard
University Cancer Center, December 2003.

Technical Development Activities:
e Attended two cancer imaging workshops sponsored by the Washington Academy of Biomedical
Engineering (WABME):
1. 9/29/03: '"Individualized Treatment Using Pharmaco-Genomics & Functional
Imaging" (George Washington University)
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2. 11/12/03: “Cancer Imaging for the Operating Room of 2020” (Georgetown University)
e Attended weekly cancer workshops conducted by the Howard University Cancer Center
e Attended SPIE Medical Imaging Meeting (February, 2004, San Diego, CA)
e Taught “Computer-Aided Diagnosis” portion of “Introduction to Imaging Technologies” course, The
Catholic University of America (course number ENGR552)

V. CONCLUSIONS

Overall the segmentation method has produced overlap and accuracy values that reflect the difficulties of
the data set. These values are generally lower than those of previous experiments because the
boundaries of dense tissue masses are exceedingly difficult to locate. The flooding phenomenon is also
responsible for these low values because in some cases the intensity values of the masses are very close to
those of surrounding fibroglandular tissue. The difficulty of locating mass boundaries is also reflected in
some cases where there are significant differences between the expert traces. The computer-segmented
results are sometimes more closely correlated with one expert in some cases while the results are more
closely correlated with the second expert in other cases. During the next phase of this research work, the
PI will compare the computer-segmented results to each observer as well has compare the experts’ traces
to each other in efforts to answer the questions around expert reliability and consistency. Once these
questions have been answered we believe that it will possible to decide how the images need to be filtered
or if they need to be filtered at all.
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ABSTRACT

The purpose of this work was to develop an automatic boundary
detection method for mammographic masses and to observe the
method’s performance on different four of the five margin groups
as defined by the ACR, namely, spiculated, ill-defined,
circumscribed, and obscured. The segmentation method utilized a
maximum likelihood steep change analysis technique that is
capable of delineating ill-defined borders of the masses. Previous
investigators have shown that the maximum likelihood function
can be utilized to determine the border of the mass body. The
method was tested on 122 digitized mammograms selected from
the University of South Florida’s Digital Database for Screening
Mammography (DDSM).  The segmentation results were
validated using overlap and accuracy statistics, where the gold
standards were manual traces provided by two expert
radiologists. We have concluded that the intensity threshold that
produces the best contour corresponds to a particular steep
change location within the likelihood function.

1. INTRODUCTION

In a CAD, system, segmentation is arguably one of the most
important aspects — particularly for masses — because strong
diagnostic predictors for masses are shape and margin type [2,9].
The margin of a mass is defined as the interface between the mass
and surrounding tissue [2]. Furthermore, breast masses can have
unclear borders and are sometimes obscured by glandular tissue
in mammograms. A spiculated mass consists of a central mass
body surrounded by fibrous projections, hence the resulting
stellate shape. For the aforementioned reasons, proper
segmentation - to include the body and periphery - is extremely
important and is essential for the computer to analyze, and in
turn, determine the malignancy of the mass in mammographic
CAD, systems.

Over the years researchers have used many methods to segment
masses in mammograms. Petrick [7] et al. developed the Density
Weighted Contrast Enhancement (DWCE) method, in which
series of filters are applied to the image in an attempt to extract
masses. Comer et al. [1] segmented digitized mammograms into

0-7803-8388-5/04/$20.00 ©2004 IEEE

homogeneous texture regions by assigning each pixel to one of a
set of classes such that the number incorrectly classified pixels
was minimized via Maximum Likelihood (ML) analysis. Li 5]
developed a method that employs k-means classification to
classify pixels as belonging to the region of interest (ROI) or
background.

Kupinski and Giger developed a method {4], which uses ML
analysis to determine final segmentation. In their method, the
likelihood function is formed from likelihood values determined
by a set of image contours produced by the region growing
method. This method is a highly effective one that was also
implemented by Te Brake and Karssemeijer in their comparison
between the discrete dynamic contour model and the likelihood
method [9]. For this reason we chose to investigate its use as a
possible starting point from which a second method could be
developed. Consequently in our implementation of this work we
discovered an important result, i.e., the maximum likelihood steep
change. It appears that in many cases this method produces
contour choices that encapsulate important borders such as mass
spiculations and ill-defined borders.

2. METHODS

2.1 Initial Contours

As an initial segmentation step, we followed the overall region
similarity concept to aggregate the area of interest [1, 4]. Used
alone, a sequence of contours representing the mass is generated;
however, the computer is not able to choose the contour that is
most closely correlated with the experts’ delineations.
Furthermore, we have devised an ML function steep change
analysis method that chooses the best contour that delineates the
mass body as well as its extended borders, i.e., extensions into
spiculations and areas in which the borders are ill-defined or
obscured. This method is an extension of the method developed
by Kupinski and Giger [4] that uses ML function analysis to
select the contour which best represents the mass, as compared to
expert radiologist traces. We have determined that this technique
can select the contour that accurately represents the mass body
contour for a given set of parameters; however, further analysis
of the likelihood function revealed that the computer could
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choose a set of three segmentation contour choices from the
entire set of contour choices, and then make a final decision from
these three choices.

The algorithm can be summarized in several steps. Initially, we
use an intensity based thresholding scheme to generate a
sequence of grown contours (S;), where gray value is the
similarity criterion. The image is also multiplied by a 2D
trapezoidal membership function (2D shadow), whose upper base
measures 40 pixels and lower base measures 250 pixels (1 pixel =
50 microns). The image to which the shadow has been applied is
henceforth referred to as the "fuzzy" image. The original image
and its fuzzy version were used to compute the likelihood of the
mass’s boundaries. The computation method is comprised of
two components for a given boundary: (1) formulation of the
composite probability and (2) evaluation of likelihood.

In addition, we chose to aggregate contours using the original
image. This accounts for the major difference from that
implemented by the previous investigators. Since smoother
contours were not used, the likelihood function showed greater
variations. In many situations, the greatest variations occurred
when there was a sudden increase of the likelihood, and this was
strongly correlated with the end of the mass border growth. This
phenomenon would be suppressed if the fuzzy image was used to
generate the contours. The fuzzy image was used mainly to
construct the likelthood function.

2.2 Composite Probability Formation
For a contour (S;), the composite probability (C;) is calculated:
cls, = plfeyfsxplnxyls) @
The quantity fi(x,y) is the area to which the 2D shadow has been
multiplied, p(fi{x,y)IS;) is the probability density function of the
pixels inside S; where ‘i’ is the region growing step associated
with a given intensity threshold. The quantity m(x,y) is the area
outside S; (non-fuzzy), and p(m(x,y)IS;) is the probability density
function of the pixels outside S;. Next we find the logarithm of
the composite probability of the two regions, C;

Log(C|s, )= tog(p(f; (x. y)5, )+ log(plm (x.y)s.)) @

2.3 Evaluation of Likelihood Function

The likelihood that the contour represents the fibrous portion of
the mass, i.e., mass body is determined by assessing the maximum
likelihood function:

argmax(Log(CS, )} S,.i = 1,..n 3

Equation (3) intends to find the maximum value of the
aforementioned likelihood values as a function of intensity
threshold. It has been assessed (also by other investigators [4])
that the intensity value corresponding to this maximum likelihood
value is the optimal intensity nceded to delineate the mass body
contour. However, in our implementation it was discovered that
the intensity threshold corresponding to the maximum likelihood
value confines the contour to the mass body. In our study many
of these contours did not include the extended borders. We,
therefore, hypothesize that the contour represents the mass’s
extended borders may well be determined by assessing the
maximum changes of the likelihood function, i.e., locate the
steepest likelihood value changes within the function:

-(%(Lng(C,ls,)}S,,i=l,‘..,n @)

Based on this assumption, we have carefully analyzed the
behavior of maximum likelihood function. The analysis reveals
that we have successfully discovered that the most accurate mass
delineation is usually obtained by using the intensity value
corresponding to the first or second steep change locations within
the likelhood function immediately following the maximum
likelihood value on the likelihood function.

~700000 1
600 _ 2650 27 —
2050079 — Group 1
710000 (max likelihood location)
-715000
720000 } Group 2 .
725000 (first steep change location)
730000 Group 3
735000t (second steep change location)

Figure 1: A likelihood function with steep change indicators

2.4 Steep change definition
The term "steep change” is rather subjective and can defined as a
location between two or more points in the function where the
likelihood values experience a significant change. In some cases
the likelihood function increases at a slow rate. The algorithm
design accounts for this issue by calculating the difference
between likelihood values in steps over several values and
comparing the results to two thresholds. The difference equation
is given by:

he)= flz—wt)=flz=w(t+1)), 1=0,...,N (5)
where f is the likelihood function, z is the maximum intensity, w is
the width of the interval over which the likelihood differences are
calculated (e.g. — for w=7 differences are calculated every 7
points), and N is the total number of points in the searchable area
divided by w. If the calculation in question yields a value greater
than or equal to a given threshold, then the intensity
corresponding to this location is considered to be a steep change
location. The threshold algorithm occurs as follows:

If (h([)ML > MLTI); t=0,...,m
Then choice 1 = intensity where that condition is satisfied
If (h(mL > MLyy); t=m,...,2
Then choice 2 = intensity where that condition is satisfied

where h(t)q is the steep change value given by equation (5),
MLr, and MLy, are pre-defined threshold values, m is the
location in the function where the choice 1 condition is satisfied,
and z is the location in the function where the choice 2 condition
is satisfied. Once the condition is satisfied for the first threshold
value (ML) then its corresponding intensity value is used to
produce the segmentation contour for the first steep change
location. Once the condition is satisfied for MLy, then its
corresponding intensity value is used to produce the segmentation
contour for the second steep change location.

2.5 Validation
The segmentation method was validated on the basis of overlap
and accuracy [8,10]:

N,

. (6)

Overlap = ——F——
N}N + NTI' + NH’
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where Npp is the true positive fraction, Nyy true negative fraction,
Ngp is the false positive fraction, and Ngy is the false negative
fraction. The gold standards used for the validation study were
mass contours, which have been traced by expert radiologists.
Our experiments produced contours for the intensity values
resulting from three locations within the likelihood functions: (1)
The intensity for which a value within the likelihood function is
maximum (group 1 contour) (2) The intensity for which the
likelihood function experiences its first steep change (group 2
contour) and (3) The intensity for which the likelihood function
experiences its second steep change (group 3 contour). We have
observed that the intensity for which the likelihood function
experiences its first steep change produces the contour trace that
is most highly correlated with the gold standard traces, regarding
overlap and accuracy.

3. EXPERIMENTS AND RESULTS

Here we describe the database used, describe the experiments,
provide visual results obtained by the algorithm, as well as report
the results obtained by the ANOVA test.

3.1 Database

For this study, a total of 122 masses were chosen from the
University of South Florida's Digital Database for Screening
Mammography (DDSM) [3]. The films were digitized at
resolutions of 43.5 or 50 pm's using either the Howtek or
Lumisys digitizers, respectively. The DDSM cases have been
ranked by expert radiologists on a scale from 1 to 5, where 1
represents the most subtle masses and 5 represents the most
obvious masses. The images were of varying subtlety ratings.
The first set of expert traces was provided by an attending
physician of the GUMC, and is hereafter referred to as the Expert
A traces. The second set of expert traces was provided by the
DDSM, and is hereafter referred to as the Expert B traces.

3.2 Experiments and Results

As mentioned previously, the term “steep change” is very
subjective and therefore a set of thresholds needed to be set in an
effort to define a particular location within the likelihood function
as a “steep change location”. For this study the following
thresholds ~ were  experimentally  chosen: ~ MLy,=1800,
ML,=1300, where MLy = threshold for steep change location 1
for the likelihood function, and MLy, = threshold for steep
change location 2 for the likelihood function. We performed a
number of experiments in an effort to prove that the intensity for
which the likelihood function experiences the first steep change
location produces the contour trace, which is most highly
correlated with the gold standard traces regarding overlap and
accuracy.

First we present segmentation results for two malignant cases
followed segmentation results for two benign cases. Each figure
contains an original image, traces for Experts A and B, and
computer segmentation results for groups 1, 2, and 3. Second,
we present data that plots the mean values for various margin
groups for both overlap and accuracy measurements. The plots

present data for the spiculated and ill-defined groups of malignant
masses, and ill-defined and circumscribed groups of benign
masses. Data was not presented for the other categories because
there was not a sufficient amount of cases.
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margins ROI Trace Trace
o nnn
Group 1 Group 2 Group 3
Result Result Result

Figure 2: Segmentation Results: Spiculated Malignant Mass

Malignant mass
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margins ROI Trace Trace
o .'n
Group 1 Group 2 Group 3
Result Result Result

Figure 3: Segmentation Results: Ill-defined Malignant Mass
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Figure 4: Segmentation Results: Obscured Malignant Mass
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Figure 5: Segmentation Results: Ill-defined Benign Mass
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Figure 6: Segmentation Results: Circumscribed Benign Mass
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Figure 8: Mean Measurement Values (Benign Masses)

4. DISCUSSION AND CONCLUSION

The visual results (see Figures 2-6) reveal that the group 2 trace
appears to delineate the masses better than the group 1 and group
3 contours in most cases. Visually, it appears that the method
has performed equally well on all margin groups. This is an
encouraging result because some of the more difficult masses to
segment are typically those that are spiculated, obscured, and
those that have ill-defined borders. The plots shown in Figures 7-
8 confirm that the group 2 trace performs better than the other

groups on the basis of overlap and accuracy for all margin
groups, therefore supporting our visual observations.

In future work, a worthwhile study would be to test gather more
data for all margin groups in an effort to see if the various groups
require different parameter values to maximize the algorithm’s
robustness. Our ultimate goal is to optimize its performance for
those masses falling in the ill-defined and obscured margin groups
because segmentation of masses falling into those categories is
exceedingly difficult.
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Abstract
The purpose of this work was to develop an automatic boundary detection method for
mammographic masses and to rigorously test this method via statistical analysis. The
segmentation method utilized a steepest change analysis technique for the determination of the
mass boundaries based on a composed probability density cost function. Previous investigators
have shown that this function can be utilized to determine the border of mass body. We have
further analyzed this method and have discovered that the steepest changes in this function can
produce mass delineations to include extended projections. The method was tested on 124
digitized mammograms selected from the University of South Florida’s Digital Database for
Screening Mammography (DDSM). The segmentation results were validated using overlap,
accuracy, sensitivity, and specificity statistics, where the gold standards were manual traces
provided by two expert radiologists. We have concluded that the best intensity threshold
corresponds to a particular steepest change location within the composed probability density
function. We also found that our results are more closely correlated with one expert than with
the second expert. These findings were verified via Analysis of Variance (ANOVA) testing.
The ANOVA tests obtained p-values ranging from 1.03x10” - 7.51x10°"7 for the single observer
studies, 2.03x107% — 9.43x10™ for the two observer studies, and results were categorized using
three significance levels, i.e., p < 0.001 (extremely significant), p < 0.01 (very significant), and p

< 0.05 (significant), respectively .

Index Terms: mass boundary detection, mammography, probability-based cost function




I. INTRODUCTION

In the United States, breast cancer accounts for one-third of all cancer diagnoses among
women and it has the second highest mortality rate of all cancer deaths in women'. In several
studies it has been shown that only 13% - 29% of suspicious masses were determined to be
malignant“, which indicates that there are high false positive rates for biopsied breast masses.
A higher predictive rate is anticipated by combining the mammographer's interpretation and the
computer analysis. Other studies have shown that 7.6% - 14% of the patients have
mammograms that produce false negative diagnosess‘6. Alternatively, a Computer Assisted
Diagnosis (CADy) system can serve as a clinical tool for the radiologist and consequently lower
the rate of missed breast cancer.

Generally, CADy systems consist of three major stages, namely, segmentation, feature
calculation, and classification. Segmentation is arguably one of the most important aspects of
CADy — particularly for masses - because a strong diagnostic predictor for masses is shape.
Specifically, many malignant masses have ill-defined, and/or spiculated borders and many
benign masses have well-defined, rounded borders. Furthermore, breast masses can have
unclear borders and are sometimes obscured by glandular tissue in mammograms. During the
search for suspicious areas it is possible that masses of this type are overlooked by radiologists.
When a specific area is deemed to be suspicious, the radiologist analyzes the overall mass,
including its shape and margin characteristics. The margin of a mass is defined as the interface
between the mass and surrounding tissue, and is regarded by some as one of the most important
factors in determining its si gnificance7. Specifically, a spiculated mass consists of a central
mass body surrounded by fibrous extensions, hence the resulting stellate shape. In this context,
“extension” refers to those portions of the mass containing ill-defined borders, spiculations,

fibrous borders, and projections. Although the diameters of these cancers are measured across



the central portion of the mass, microscopic analysis of the extensions also reveals associated
cancer cells, i.e., the extended projections may contain active mass growth7’8. In addition, the
features of the extended projections and ill-defined borders are highly useful for identifying
masses. Hence, proper segmentation - to include the body and periphery - is extremely
important and is essential for the computer to analyze, and in turn, determine the malignancy of
the mass in mammographic CADy systems.

Te Brake and Karssemeij er’ implemented a discrete dynamic contour model, a method
similar to snakes, which begins as a set of vertices connected by edges (initial contour) and
grows subject to internal and external forces. Li'® developed a method that employs k-means
classification to classify pixels as belonging to the region of interest (ROI) or background.
Petrick et al.'! developed the Density Weighted Contrast Enhancement (DWCE) method, in
which series of filters are applied to the image in an attempt to extract masses. Pohlman et al."?
developed an adaptive region growing method whose similarity criterion is determined from
calculations made in 5x5 windows surrounding the pixel of interest. Mendez et al."? developed
a method, which combined bilateral image subtraction and region growing to segment masses.

Several studies have also used probability-based analysis to segment digitized
mammograms. Li et al.'* developed a segmentation method that first models the histogram of
mammograms using a finite generalized Gaussian mixture (FGGM) and then uses a contextual
Bayesian relaxation labeling (CBRL) technique to find suspected masses. Furthermore, this
method uses the Expectation-Maximization (EM) technique in developing the FGGM model.
Comer et al." utilized an EM technique to segment digitized mammograms into homogeneous
texture regions by assigning each pixel was to one of a set of classes such that the number
incorrectly classified pixels was minimized. =~ Kupinski and Giger'® developed a method, which

combines region growing with probability analysis to determine final segmentation. In their



method, the probability-based function is formed from a specific composed probability density
function, determined by a set of image contours produced by the region growing method. This
method is a highly effective one and it was implemented by Te Brake and Karssemeijer in their
work’ that compared the results of a model of the discrete dynamic contour model with those of
the probability-based method. For this reason we chose to investigate its use as a possible
starting point from which a second method could be developed. Consequently for our
implementation of this work we discovered an important result, i.e., the steepest changes of a
cost function composed from two probability density functions of the regions. It appears that in
many cases this result produces contour choices that encapsulate important borders such as mass
spiculations and ill-defined borders.

Several CADy classification techniques have been developed. They are described here

1."” has

to underscore the importance of accurate segmentation in CADy studies. Loeta
developed an effective analysis method using the circular path neural network technique that was
specifically designed to classify the segmented objects and can certainly be extended for the
applications related to mass classification. Polakowski et al.'® used a multilayer perceptron
(MLP) neural network to distinguish malignant and benign masses. Both Sahiner et al."” and

Rangayyan et al.?°

used linear discriminant analysis to distinguish benign masses from malignant
masses. While many CADy systems have been developed, the development of fully-automated

image segmentation algorithms for breast masses has proven to be a daunting task.

II. METHODS
A. Segmentation method — Maximum change of cost function as a continuation of

probability-based function analysis



As a point of clarification, in this work we refer to the function used to find optimal
region growing contours in Kupinski and Giger’s study'® as the probability-based function and
we refer our function as the cost function. The two functions are similar; however they differ in
terms of the images used in their formation. ~As an initial segmentation step, region growing is

used to aggregate the area of interest'> '>?'

, where grayscale intensity is the similarity criterion.
This phase of the algorithm starts with seed point whose intensity is high, and nearby pixels with
values greater than or equal to this value are included in the region of interest. ~ As the intensity
threshold decreases, the region increases in size, therefore there is an inverse relationship
between intensity value and contour size. In many cases the region growing method is
extremely effective in producing contours that are excellent delineations of mammographic
masses. However, the computer is not able to choose the contour that is most highly correlated
with the experts’ delineations, specifically, those masses that contain ill-defined margins or
margins that extend into surrounding fibroglandular tissue. Furthermore, the task of asking a
radiologist to visually choose the best contour would be both time intensive and extremely
subjective from one radiologist to another.

The segmentation technique described in this work attempts to solve and automate this
process by adding a two-dimensional (2D) shadow and probability-based components to the
segmentation algorithm. Furthermore, we have devised a steepest descent change analysis
method that chooses the best contour that delineates the mass body contour as well as its
extended borders, i.e., extensions into spiculations and areas in which the borders are ill-defined
or obscured. It has been discovered that the probability-based function is capable of extracting
the central portion of the mass density as demonstrated by the previous investigators]6, and in

this work the method has been advanced further such that it can include the extensions of the

masses. The enhanced method can produce contours, which closely match expert radiologist



traces. Specifically, it has been observed that this technique can select the contour that
accurately represents the mass body contour for a given set of parameters. However, further
analysis of the cost function composed from the probability density functions inside and outside
of a given contour revealed that the computer could choose a set of three segmentation contour
choices from the entire set of contour choices, and later make a final decision from these three

choices.

1. Region growing and pre-processing
Initially, a 512x512 pixel area surrounding the mass is cropped. The region growing

L 12,13,2
technique !

to aggregate the region of interest was employed, where the similarity criterion
for our region growing algorithm is grayscale intensity. To start the growth of first region, a

seed point was placed at the center of the 512x512 ROIL.  The region growing process continues

by decreasing the intensity value until we have grown a sufficiently large set of contours.

Next, the image is multiplied by a 2D trapezoidal membership function with rounded
corners whose upper base measures 40 pixels and lower base measures 250 pixels (1 pixel = 50
microns). This function was chosen because it is a good model of the mammographic mass’s
intensity distribution.  Since the ROI's have been cropped such that the mass's center was
located at the center of the 512 pixel x 512 pixel area, shadow multiplication emphasizes pixel
values at the center of the ROI and suppresses background pixels. The image to which the
shadow has been applied is henceforth referred to as the "processed" image. The original image
and its processed version were used to compute the highest possibility of its boundaries. The
computation method is comprised of two components for a given boundary: (1) formulation of

the composed probability as a cost function and (2) evaluation of the cost function.




The contours were grown using the original image as opposed to the processed image and
this accounts for a major difference between the current implementation and that implemented
by the previous investi gatorsm. By using contours generated from the original image a cost
function composed from the probability density functions inside and outside of the contours was
produced. In many situations, the greatest changes in contour shape and size occur at sudden
decreases within the function. In analyzing these steep changes it was observed that the
intensity values corresponding to the steep changes typically produced contours that
encapsulated both the mass body as well as its spiculated projections or ill-defined margins.
This phenomenon would be suppressed if the processed image was used to generate the contour.
A more detailed discussion of steep changes within the cost function is forthcoming in section

ILA2.3.

The processed image was mainly used to construct the cost function. A common
technique used in mass segmentation studies is to pre-process the images using some type of
filtering mechanism' "¢ in an effort to separate the mass from surrounding fibroglandular tissue.
This method could be particularly beneficial to the region growing process because it would aid
in preventing the regions from growing into surrounding tissue. ~Alternatively, the filtering
process could impede our goal of attempting to encapsulate a mass’s extended borders as well as
borders that are ill-defined due to the filtering process’s a tendency to create rounded edges on
margins that are actually jagged, i.e., spiculated. This phenomenon could potentially defeat the
goal of extracting mass borders. For these reasons, we have chosen to aggregate the contours

using the original ROI rather its processed version.



2. Formulation of the composed probability as a cost function

In the context of this work, the composed probability is defined as the probability density
functions of the pixels inside and outside a contour using a processed and non-processed version

of an image. Specifically, for a contour (S;), the composed probability (C;) is calculated:

CJS, =§P(f,~(x, y)[Si)Xg plm,(x.y)s,) )]

The quantity fi(x,y) is the set of pixels, which lie inside the contour S; (see Fig. 1a), and this area
contained processed pixel values. The quantity p(fix,y)|S;) is the probability density function of
the pixels inside S; (fi(x,y)), where ‘i’ is the intensity threshold used to produce the contours
given by the region growing step, and ‘4’ is the maximum intensity value. The quantity m;(x,y)
is the set of pixels, which lie outside the contour S; (see Fig. 1b), and this area contained
non-processed pixels. The quantity p(mi(x,y)|S;) is the probability density function of the pixels
outside S;, where ‘i’ is the intensity threshold used to produce the contours given by the region
growing step, and ‘4’ is the maximum intensity value. For implementation purposes, the

logarithm of the composed probability of the two regions, C; was used.

Log(C|s,)= 1og(t! p(f (% y)s, )] + log(ljj plm,(x,y)s, )) )
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Fig. 1: Four grown contours used to construct the cost function : starts from high intensity thresholds and
moves towards low intensity thresholds. Each contour separates the ROI into two parts: (a) Segmented
image (based on processed image) used to compute density function p(fi(x,y)|S;) and (b) Masked image
(based on non-processed original image) used to compute density function p(my(x,y)|S;) for four intensity
threshold values
3. The cost function based on the composed probability density functions

To select the contour that represents the fibrous portion of the mass, it is appropriate to
examine the maximum value of the cost function:

argmax(Log(C,,ISi),Si,i: 1,...n) 3)

It has been assessed (also by other investi gators”!®

) that the intensity value corresponding to this
maximum value is the optimal intensity needed to delineate the mass body contour. However,
in the current implementation it was discovered that the intensity threshold corresponding to the
maximum value confines the contour to the fibrous portion of the mass, i.e., the mass body. In
the study many of these contours did not include the extended borders. It is therefore,
hypothesized that the contour represents the mass’s extended borders may well be determined by

assessing the greatest changes of the cost function, i.e., locate the steepest value changes within

the function:
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Based on this assumption, the cost functions associated with masses were analyzed. The analysis
reveals that the most likely boundaries of masses associated with expert radiologist traces are
usually produced by the intensity value corresponding to the first or second steepest change of
value immediately following the maximum value on the cost function (see Fig. 2a). The
description of this discovery is given below followed by a validation study described in section
I1.B and results shown in section IIl.  The overarching goal of the steep descent method is to
determine the possibility that a certain contour is the best contour, which represents the mass and

its extended borders.

3. The definition of steepest change

The term "steepest change" is rather subjective and in the context of this work can be
defined as a location between two or more points in the cost function where the values
experience a significant change. When the values are plotted as a function of intensity, these
significant changes are often visible in the function. In some cases the cost function increases
at a slow rate, therefore a potential steepest change location could be missed. The algorithm
design compensates for this issue by calculating the difference between values in steps over
several values and comparing the results to two threshold values. The difference equation is
given by:

d(t)= f(z—wt)— f(z—wlt +1)), 1=0,....m (5)

where fis the cost function , z is the maximum intensity, w is the width of the interval over which
the cost function differences are calculated (e.g. — for w=5 differences are calculated every 5
points), and m is the total number of points in the searchable area divided by w. Note that “wt”

115544
1

is associated with a specific contour “i”” described earlier. If the value of d(?) yields a value

11



. greater than or equal to a given threshold, then the intensity corresponding to this location is

determined to be a steepest change location. The threshold algorithm occurs as follows:
If(dt)>TVy); t=0,....m
Then choice 1 = intensity where that condition is satisfied.
If (d(t) >TV,y); t=m,....z
Then choice 2 = intensity where that condition is satisfied.
where TV, and TV are pre-defined threshold values, m is the location in the function where the
choice 1 condition is satisfied, and z is the location in the function where the choice 2 condition
| is satisfied. During the examination of the contour growth with respect to the cost function , the
first steepest change (i.e., d(t)mc: as choice 1) is determined by TV immediately after the
‘ location of the maximum cost function value (corresponding to mass body discussed earlier).
The second the steepest change (i.e., d(t)mcz as choice 2) is determined by TV after the first
steepest change has been established.

As an example Fig. 1a is used to illustrate how the algorithm is carried out. In this figure,
the maximum value on the cost function occurs for a grayscale intensity value of approximatély
3330. The searching process begins from this maximum point and it is discovered that the first
steepest change (d(t)mc: as choice 1) occurs for a grayscale intensity value approximately equal
to 3200. From this point the continue the searching process continues and it is discovered that
the second steepest change (d(t)mcz as choice 2) occurs for a grayscale intensity value
approximately equal to 3175. In summary, intensity values of 3330, 3200, and 3175 can be
used to grow 3 potential mass delineation candidates, and the large set of intensity choices has

been narrowed to 3 choices. In many cases intensities, which produced the three contour

choices gave the following results:

12



(1) Intensity corresponding to the maximum value on the cost function: The central body of the
mass was encapsulated
(2) Intensity corresponding to the first steepest change on the cost function: The central body
of the mass + some of its extended borders (i.e., projections and spiculations) was
encapsulated
(3) Intensity corresponding to the second steepest change on the cost function: The central
body of the mass + more extended borders + surrounding fibroglandular tissue encapsulated
The intensity corresponding to the first steepest change provides the best choice, and an
examination of this observation is shown and discussed in sections III and IV of this work.
As stated previously the steep changes within the cost function would be suppressed if the
processed image was used to generate the contour, therefore the function would be relatively
smooth. This issue is evident in Fig. 2b, which shows a probability-based function produced by

contours that were grown using a processed ROIL
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Fig. 2: (a) Example of cost function with steepest change location indicators (b) Example of a
probability-based function without an obvious steepest change location.
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. B. Validation method

however, it was necessary to analyze the performance of the steepest change algorithm on the
basis of four statistics to verify that the algorithm is indeed capable of categorizing mass and
background pixels correctly. This type of analysis provides helpful information regarding
necessary changes for the algorithm’s design and can possibly aid in its optimization.

The segmentation method was validated on the basis of overlap, accuracy, sensitivity,

and specificityzz’ 2% These statistics are calculated as follows:

ENP
Overlap = —— 6
P=EUP ©)
Accuracy = Nop & Now @)
Nip+ Npy + Npgp + Npy

Sensitivity = — ®)

Nip + Npy

N

Specificity = ——2— )

NTN + NFP

In several segmentation studies the results were validated using the overlap statistic alone,
|
|
|
|
|
|
|
|
|

where E is the drawing produced by the expert radiologist, P is the segmentation result, Nzp is
the true positive fraction (part of the image correctly classified as mass), N7y true negative
fraction (part of the image correctly classified as surrounding tissue), Ngp is the false positive
fraction (part of the image incorrectly classified as mass), and Npy is the false negative fraction
(part of the image incorrectly classified as surrounding tissue). This method requires a gold
standard, or, contour to which the segmentation results can be compared. The gold standards
for the experiments performed in this work were mass contours, which have been traced by

expert radiologists.
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The experiments produced contours for the intensity values resulting from three locations
within the cost functions : (1) The intensity for which a value within the cost function is
maximum (2) The intensity for which the cost function experiences its first steepest change and
(3) The intensity for which the cost function experiences its second steepest change . It has
been observed that the intensity for which the cost function experiences its first steepest change
produces the contour trace that is most highly correlated with the gold standard traces, regarding
overlap and accuracy. In cases for which better results occur at the second steepest change
location, there is no significant difference between these results and the results calculated for the
first steepest change location.  Second, it has been observed that the results are more closely
correlated with one expert than with the second expert. These hypotheses were tested using the

one-way Analysis of Variance (ANOVA) test™*.

In this study, three significance levels (i.e., p
< 0.001, p <0.01, and p< 0.05) were used to categorize the ANOVA results as described in the

next section.

III. EXPERIMENTS AND RESULTS

The following sections describe the database and experiments as well as provide results
and ANOV A test results.
A. Database
For this study, a total of 124 masses were chosen from the University of South Florida's Digital
Database for Screening Mammography (DDSM)*. The DDSM films were digitized at 43.5 or
50 um's using either the Howtek or Lumisys digitizers, respectively. The DDSM cases have
been ranked by expert radiologists on a scale from 1 to 5, where 1 represents the most subtle

masses and 5 represents the most obvious masses. Table 1 lists the distribution of the masses
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studied according to their subtlety ratings.  The images were of varying contrasts and the
masses were of varying sizes.

Table 1: Distribution of DDSM masses studied according to their subtlety ratings

Subtlety Category Cancer Benign
Number of masses with a rating = 1 5 3
Number of masses with a rating = 2 12 12
Number of masses with a rating =3 18 17
Number of masses with a rating =4 9 23
Number of masses with a rating =5 15 10

The first set of expert traces was provided by an attending physician of the GUMC, and is
hereafter referred to as the Expert A traces. The second set of expert traces was provided by the

DDSM, and is hereafter referred to as the Expert B traces.

B. Experiments

As mentioned previously, the term “steepest change” is very subjective and therefore a set of
thresholds needed to be set in an effort to define a particular location within the cost function
as a “steepest change location”.  For this study the following thresholds were experimentally
chosen: TV =1800, TV,=1300, where TV = threshold for steepest change location 1 for the cost
function, and TV, = threshold for steepest change location 2 for the cost function. A number
of experiments were performed in an effort to prove that (1) the intensity for which the cost
function experiences the first steepest change location produces the contour trace, which is
most highly correlated with the gold standard traces with regard to overlap and accuracy. In
cases for which the second steepest change location achieves better results, there are no
significant differences between the values obtained from the first steepest change location and
the second steepest change location. The experiments linked with these hypotheses comprise
the studies for a single observer. ~ We have also set out to prove that (2) our results are more

closely correlated with one expert than with the second expert. The experiments linked with
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this hypothesis comprise the studies between two observers.  First segmentation results for two
malignant cases are presented, followed by segmentation results for two benign cases. Second,
the ANOVA results for a set of hypotheses are presented. The contours produced by the
maximum value as well as the steepest change locations within the cost functions are labeled as
follows:

(1) group 1: The intensity for which a value within the cost function is maximum

(2) group 2:  The intensity for which the cost function experiences its first steepest change

(3) group 3: The intensity for which the cost function experiences its second steepest change.

C. Results

Figures 3-6 display the results for two malignant cases accompanied by their cost
functions and results for two benign cases accompanied by their cost functions. The
ANOVA results appear in a set of tables (sections 2-4), where each table lists the hypothesis
tested along with p-values and their corresponding categorizations. The p-values are
categorized in the following way: not significant (NS for p > 0.05), significant (S for p < 0.05),
very significant (VS for p<0.01), and extremely significant (ES for p <0.001). Each p-value
table is followed by a second table, which contains the mean values of overlap, accuracy,
sensitivity, and specificity for each group. Sections 2 and 3 are identical regarding the
experiments, however, the pathologies of the masses are different (section 2 — malignant masses,
section 3 — benign masses). Although the experiments are identical they have been separated
for clarity purposes.

A larger set of segmentation results has been placed in an image gallery containing 7
malignant mass results (Fig. A1) and 7 benign mass results (Fig. A2). These figures are located

in the Appendix.
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1. Segmentation results
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Fig. 3 — (a) Segmentation results for a malignant mass with spiculated margins (subtlety = 2)
(b) the corresponding cost function
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Fig. 4 — (a) Segmentation results for a malignant mass with ill-defined margins (subtlety = 3)

(b) the corresponding cost function
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Fig. 5 — (a) Segmentation results for a benign mass with ill-defined margins (subtlety = 3)
(b) the corresponding cost function
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Fig. 6— (a) Segmentation results for a benign mass with circumscribed margins (subtlety = 4)

(b) the corresponding cost function
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2. ANOVA test results for comparison of contour groups with single observer: malignant cases

Table 2: Single observer results (expert A gold standard, malignant masses)

ANOVA Test P-value P-value P-value
(group 1 vs. (group 2 vs. (group 1 vs.
group 2) group 3) group 3)

Difference between groups (overlap) 1.78x10* (ES) 2.91x 107 (S) NS

Difference between groups (accuracy) NS 3.14x107 S NS -

Difference between groups (sensitivity) 1.88x10” (ES) NS 1.85x10" (ES)

Difference between groups (specificity) 5.12x10* (ES) 2.40x10°(VS)  2.71x10” (ES)

Table 3: Mean values for overlap, accuracy, sensitivity, and specificity

(expert A gold standard, malignant masses)

Measurement Mean Value Mean Value  Mean Value

(group 1) (group 2) (group 3)

Overlap 0.47 0.60 0.53

Accuracy 0.88 0.90 0.87

Sensitivity 0.49 0.75 0.81

Specificity 0.99 0.94 0.88

Table 4:  Single observer results (expert B gold standard, malignant masses)

ANOVA Test P-value P-value P-value
(group 1 vs. (group 2 vs. (group 1 vs.
group 2) group 3) group 3)
Difference between groups (overlap) 3.96x10° (ES) NS 1.58x10™
Difference between groups (accuracy) NS NS NS
Difference between groups (sensitivity) 4.88x10® (ES)  4.31x102(S)  4.25x10? (ES)
436x10™* (ES) 1.44x107 (ES)

Difference between groups (specificity) 2.70x10™ (ES)

Table 5: Mean values for overlap, accuracy, sensitivity, and specificity

(expert B gold standard, malignant masses)

Measurement Mean Value Mean Value  Mean Value
(group 1) (group 2) (group 3)
Overlap 0.38 0.54 0.51
Accuracy 0.83 0.86 0.84
Sensitivity 0.38 0.56 0.60
Specificity 1.00 0.98 0.94
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3. ANOVA test results for comparison of contour groups with single observer:

benign cases

Table 6: Single observer results (expert A gold standard, benign masses)

ANOVA Test P-value P-value P-value
(group 1 vs. (group 2 vs. (group 1 vs.
group 2) group 3) group 3)

Difference between groups (overlap) 3.19x10* (ES) 8.38x10™ (ES) NS

Difference between groups (accuracy) NS 4.73x107 (VS) 2.51x107 (VS)

Difference between groups (sensitivity) 1.14x10” (ES) 1.89x10 S)
Difference between groups (specificity) 8.93x10° (VS)  1.24x10° (VS)

7.51x10"7(ES)
3.32x107'% (ES)

Table 7: Mean values for overlap, accuracy, sensitivity, and specificity

(expert A gold standard, benign masses)

Measurement Mean Value Mean Value Mean Value
(group 1) (group 2) (group 3)

Overlap 0.46 0.58 0.45
Accuracy 0.90 0.91 0.85
Sensitivity 0.49 0.73 0.82
Specificity 0.99 0.94 0.86

Table 8:  Single observer results (expert B gold standard, benign masses)

ANOVA Test P-value P-value P-value
(group 1 vs. (group 2 vs. (group 1 vs.
group 2) group 3) group 3)
Difference between groups (overlap) 8.82x107 (ES) NS 1.62x10™ (S)
Difference between groups (accuracy) NS 2.62x107 S 2.48x10% (S)
Difference between groups (sensitivity) 1.61x107 (ES) NS 3.14x10" (ES)

Difference between groups (specificity) 1.18x107(S)  1.27x10%(S)  1.25x10” (ES)

Table 9: Mean values for overlap, accuracy, sensitivity, and specificity

(expert B gold standard, benign masses)

Measurement Mean Value Mean Value Mean Value

(group 1) (group 2) (group 3)
Overlap 0.36 0.51 0.44
Accuracy 0.88 0.89 0.83
Sensitivity 0.36 0.61 0.69
Specificity 0.99 0.94 0.86
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4. ANOVA test results for comparison of contour groups between two observers

Table 10: Two observer results: expert A vs. expert B, malignant masses

ANOVA Test P-value P-value P-value
(group 1 vs. (group 2 vs. (group 1 vs.
group 2) group 3) group 3)

Expert A vs. Expert B (overlap) 3.12x10° (VS) 3.32x10™ S) NS

Expert A vs. Expert B (accuracy) ~ 1.20x10%(S)  4.46x102(S) NS

Expert A vs. Expert B (sensitivity)  9.43x10* (ES) 3.38x10* (ES)  3.67x10™ (ES)

Expert A vs. Expert B (specificity) NS NS NS

Table 11: Mean values for overlap, accuracy, sensitivity, and specificity
(expert A vs. expert B, malignant masses)
Measurement Mean Mean Mean Mean Mean Mean
Value, Value, Value, Value, Value, Value,
Expert A ExpertB Expert A ExpertB ExpertA ExpertB
(group1) (groupl) (group2) (group?2) (group3) (group3)
Overlap 0.49 0.38 0.62 0.55 0.55 0.51
Accuracy 0.89 0.83 0.91 0.87 0.87 0.84
Sensitivity 0.52 0.38 0.75 0.60 0.82 0.68
Specificity 0.99 1.00 0.95 0.97 0.89 091
Table 12: Two observer results: expert A vs. expert B, benign masses
ANOVA Test P-value P-value P-value
(group 1vs. (group2vs. (groupl vs.
group 2) group 3) group 3)
Expert A vs. Expert B (overlap) NS NS NS
Expert A vs. Expert B (accuracy) NS NS NS
Expert A vs. Expert B (sensitivity) 3.56x107(S) 4.90x102(S) 2.03x107(S)
Expert A vs. Expert B (specificity) NS NS NS

Table 13: Mean values for overlap, accuracy, sensitivity, and specificity:
expert A vs. expert B, benign masses
Measurement Mean Mean Mean Mean Mean Mean
Value, Value, Value, Value, Value, Value,
Expert A ExpertB  Expert A ExpertB ExpertA ExpertB
(group1) (groupl) (group?2) (group2) (group3) (group3)
Overlap 0.42 0.35 0.57 0.50 0.48 0.44
Accuracy 0.90 0.88 0.91 0.89 0.85 0.83
Sensitivity 0.44 0.36 0.71 0.61 0.79 0.69
Specificity 0.99 0.99 0.94 0.94 0.86 0.86
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IV. DISCUSSION

A. Segmentation Results

From the ROI’s shown in Figures 3 and 4 it is evident that the intensity produced by the
maximum value is capable of accurately delineating the mass body contour, and in some cases
this intensity corresponding to the maximum value produces a contour, which falls inside the
mass body contour. This can be potentially problematic because low segmentation sensitivities
can produce large errors during the feature calculation and diagnosis phases of CADy. Of the
three available segmentation choices for each mass, it appears that the first steepest change
location produces the contours with strongest correlation in comparison to both gold standards.
These contours appear to cover both the mass body contour as well as the extended borders. In
some instances the region grows into some areas that are not declared as mass areas by the gold
standards — we call this flooding - and fails to grow into other areas that have been declared as
mass areas. Finally, the second steepest change location produces contours that also cover both
the mass body contour as well as the extended borders, and, the contours tend to also include
surrounding fibroglandular tissue; hence, the flooding phenomenon is a cdmmon occurrence.
In the cases shown, it is clear that steepest change location 1 produces the best contours, in
comparison to the gold standards, however the ANOVA test results allow us to make such a
claim. The following discussion is divided into five sections: single observer malignant
results, single observer benign results, and two observer results (malignant and benign),

algorithm performance, and an additional discussion on methods.

B. Malignant Cases with Single Observer
For both the Expert A and Expert B gold standards, Tables 2-5 show a statistically

significant difference between groups 1 and 2 on the basis of overlap and sensitivity, where the
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mean values of group 2 were higher than the mean values of group 1 for these statistics. These
results are expected because as shown in the figures, the group 2 contours consistently covered
more of the mass area (and correctly covered this mass area) as compared to the group 1
contours, according to both experts. There was a statistically significant difference in
sensitivity between group 1 and group 3, where the mean of group 3 was higher than the mean of
group 1. This is an expected result because out of all the groups, group 3 contours consistently
cover the most mass area. For the Expert B gold standard there was a statistically significant
difference in overlap between group 1 and group 3, where the mean of group 3 was higher than
the mean of group 1. This is an expected result because out of all the groups, group 3 contours

correctly cover the most mass area.

C. Benign Cases with Single Observer

For the Expert A there were statistically significant differences between the group 2 and
group 3 traces on the basis of overlap, accuracy, and sensitivity, where the group 2 mean values .
for overlap and accuracy were higher than those of group 3 (see Tables 6-9). This is an
expected result because it is likely that many of the group 3 contours contained flooded areas,
which will cause both of these values to be lower than contours without flooded areas. The
overlap and sensitivity values for group 2 were significantly higher than those of group 1. This
is an expected result because the group 2 contours not only covered more mass area and correctly
cover this area. Finally, the group 3 accuracy and sensitivity values were significantly higher
than those for group 1. This is an expected result because the group 3 contours not only cover
more mass area but also correctly cover this area.

For the Expert B gold standard there were statistically significant differences between the

group 2 and group 3 traces on the basis of accuracy and sensitivity, where the group 2 mean
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values for overlap and accuracy were higher than those of group 3. This is an expected result
because it is likely that many of the group 3 contours contained flooded areas, which will cause
both of these values to be lower than contours without flooded areas. There were statistically
significant differences between group 1 and group 2 on the basis of overlap and sensitivity,
where the mean values for group 2 were higher than the mean values for group 1. This is an
expected result because the group 2 contours not only cover more mass area and correctly cover
this area. There were statistically significant differences between group 3 and group 1 on the
basis of overlap and sensitivity, where the mean values for group 3 were higher than those of
group 1. This is an expected result because the group 3 contours not only covered more mass
area and correctly covered this area.

In nearly all cases for the single observer studies, it was expected that the specificity values
for group 1 would always be higher for group 1 than those for groups 2 and 3 because this
contour always covered the smallest mass area, consequently its background was always highly
correlated with the background areas dictated by the gold standards. Moreover, in some cases
the group 2 and group 3 contours grew into areas that were not regarded as mass, but rather were
regarded as background, therefore their specificity values had a lower correlation with the gold

standard as compared to the group 1 contours.

D. Malignant and Benign Cases with Two Observers

For the two observer studies, comparisons were made between experts A and B on a
group-by-group basis in an effort to prove that there were significant differences between the two
radiologists on the basis of overlap, ‘accuracy, sensitivity, and specificity (see Tables 10-13).
For the malignant masses there were statistically significant differences between the two experts

on the basis of overlap, accuracy, and sensitivity. There was a statistically significant
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difference between the two experts for group 3 on the basis of sensitivity. For the benign
masses, there were statistically significant differences between the two experts for all three
groups on the basis of sensitivity. For all cases Expert A’s values were consistently higher than
those of Expert B. It is an expected result that there were statistically significant differences
between the experts due to their differences in opinion. The fact that Expert A’s mean values
were higher than those for expert B, however does not warrant the conclusion that Expert A is a
more reliable expert; however it does not warrant the conclusion that there is stronger
agreement between the computer’s results and Expert A’s traces.  Further, there were less
statistically significant differences for the benign cases than for the malignant cases. This is an
expected result because in general, benign masses have better defined borders so it was expected

that the two experts would strongly agree.

E. Algorithm performance

It appears that the thresholds chosen produce first steepest change location intensities that
generate contours that are closely correlated with the expert traces. In some instances the
second steepest change location is extremely far from the first steepest change location, which
implies that the function in question increases very slowly; and, many of the second steepest
change location intensities produce contours with flooded areas. For the majority of the cases
in which the second steepest change location contour achieves a higher sensitivity value, but not
a significantly higher sensitivity value, we can still choose the first steepest change location
contour because the difference between the two contours is likely to be negligible.

In analyzing the probability-based cost functions, we found that those functions with very
steep changes are typically associated with masses that have well-defined borders while those

functions that increase slowly are associated with masses that have ill-defined borders. This
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phenomenon may make it necessary to develop an adaptive threshold process for the steepest
change evaluation such that the functions are grouped into various categories (e.g. — smooth
versus steep) because a threshold value that is optimal for the steep function may not be optimal

for a smooth function.

F. Additional discussion on methods used

In this study it appears that the steepest descent method has the advantage of locating
ill-defined margins as well as extensions such as malignant spiculations and projections for
mammographic masses. If the human eye is solely used, it can be difficult to separate the mass
from surrounding fibroglandular tissue. Therefore, it is believed that this method has the
potential to complement the process of reading mammographic films. One of the downfalls of
the method is its dependence upon the assumption that masses are generally light in color.  This
assumption impedes the region growing process because masses that contain darker areas and are
surrounded on one or more sides by bright tissue can cause contours to flood into areas that are
not actual mass tissue. Typically, this situation occurs for the mass located on the border of the
breast region on a mammogram.

All of the segmentation method.s surveyed in the introduction of this paper are excellent
solutions for the problems the authors set out to solve, however, in some cases it is difficult to
make comparisons between different methods without the availability of a set of several visual
results. In several studies, the focus was either to detect masses or to distinguish malignant
from benign masses.  So the validation process did not take the form of a comparison with
expert radiologist manual traces, but rather features were calculated on the potential mass
candidates and they were later classified as being mass tissue or normal tissue'®'1 1 The

purpose of Li’s study'® was to distinguish normal and abnormal tissue so the authors did not
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provide any statistics such as overlap or accuracy. Nevertheless, the study contains a figure of
60 masses that contain both computer and radiologist annotations to give the reader an idea of

the computer algorithm’s performance. Te Brake and Karssemeijer’s study9 used the overlap
statistic to test the efficacy of their method and they indicated that the central mass area of the
mass was delineated by the radiologist and their computer results were compared to these
annotations. Kupinski and Giger’s study16 also used the overlap statistic to test the efficacy of
their method and set a threshold for which the mass was considered to be successfully segmented.
For example, masses whose overlap values are greater than 0.7 imply that there was successful
segmentation.

The technical method presented herein shows that the results obtained from the
maximization of the composed probability density function (i.e., the cost function) are equivalent
to those obtained from previous methods presented by previous investigator. However, the
steepest change of the composed probability density function is most close to the radiologist

determination.

V. CONCLUSION

We have shown that our fully automatic boundary detection method for malignant and
benign masses can effectively delineate these masses using intensities, which correspond to the
first steepest change location within their cost functions .  Additionally, it appears that the
method is more highly correlated with one set of expert traces than with a second set of expert
traces, regarding the accuracy and overlap statistics. This result shows that inter-observer
variability can be an important factor in segmentation algorithm design, and it has motivated us
to seek the opinions of more expert radiologists to test the robustness of our algorithm. The

second steepest change location intensity will always yield contours with higher sensitivity
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values, however, it behooves us to choose the first steepest change location intensity because it
avoids the risk of choosing contours that contain substantial flooding. In future work, a
worthwhile study would be to run the experiments for different threshold values in an effort to
discover the possibility of deriving an optimal threshold procedure. We believe that such a

procedure would improve the method of choosing optimal contours.
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APPENDIX A — Gallery of Segmentation Results
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Fig. Al — Segmentation results for a set of malignant masses
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Fig. A2 — Segmentation results for a set of benign masses
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